Exercise 30

Explain, using Theorems 4, 5, 7, and 9, why the function is continuous at every number in its domain. State the domain.

$$
B(x)=\frac{\tan x}{\sqrt{4-x^{2}}}
$$

Solution

In the numerator is a trigonometric function, and in the denominator is a root function. By Theorem 7 both of these are continuous at all numbers in their respective domains.

$$
\begin{aligned}
\tan x: & x \neq \frac{\pi}{2}+n \pi, \quad n=0, \pm 1, \pm 2, \ldots \\
\sqrt{4-x^{2}}: & -2 \leq x \leq 2
\end{aligned}
$$

And by Theorem 4 the ratio of these functions,

$$
B(x)=\frac{\tan x}{\sqrt{4-x^{2}}},
$$

is continuous where the denominator is not zero.

$$
\begin{gathered}
\sqrt{4-x^{2}} \neq 0 \\
4-x^{2} \neq 0 \\
(2+x)(2-x) \neq 0 \\
x \neq-2 \quad \text { or } \quad x \neq 2
\end{gathered}
$$

Therefore, combining these four conditions, the domain of $B(x)$ is

$$
\left\{x \mid-2<x<2, x \neq-\frac{\pi}{2}, x \neq \frac{\pi}{2}\right\}
$$

